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KEYWORDS Abstract Furin is a pro-protein convertase that moves between the trans-Golgi network and
Astrocyte; cell surface in the secretory pathway. We have previously reported that cerebral overexpres-
Ciliogenesis; sion of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin
Conditional knockout; conditional knockout (cKO) mice, we investigated the role of furin in brain development. We
Ependymal; found that furin deficiency caused early death and growth retardation. Magnetic resonance im-
Furin; aging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and
Hydrocephalus; the derangement of microtubule structures appeared along with the down-regulated expres-
Proteomics sion of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal

cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules
including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte
overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differ-
entiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated
with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved
in ependymal damage contributing to hydrocephalus in furin ckO mice. The structural and mo-
lecular alterations provided a clue for further studying the potential mechanisms of furin.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

* Corresponding author.
** Corresponding author.
E-mail addresses: 236809246@qq.com (J. Zhou), woodchen2015@163.com (G. Chen).
Peer review under responsibility of Chongging Medical University.
' These authors contributed equally to this work.

https://doi.org/10.1016/j.gendis.2023.04.037
2352-3042/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:236809246@qq.com
mailto:woodchen2015@163.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gendis.2023.04.037&domain=pdf
https://doi.org/10.1016/j.gendis.2023.04.037
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/23523042
http://www.keaipublishing.com/en/journals/genes-diseases
https://doi.org/10.1016/j.gendis.2023.04.037

2

S. Xie et al.

Introduction

Hydrocephalus is a common birth disorder with an esti-
mated incidence of 1 in 1000 newborns." Structural and
genetic factors cause abnormalities in the flow of cere-
brospinal fluid (CSF), leading to an enlargement of the ce-
rebral ventricles.”® Many of the gene mutations are
associated with growth factors, cell surface molecules, and
intracellular signaling.? These molecular alterations corre-
late with ependymal denudation, cilia disruption, gliosis,
and inflammation.*>

Furin is a precursor protein convertase.® In the secretory
pathway, furin is trafficked from the trans-Golgi network to
the cell surface and processes a variety of substrates
ranging from growth factors, matrix metalloproteinases,
and receptors to viral-envelope glycoproteins and bacterial
exotoxins.” A large body of evidence indicates that furin is
involved in viral infection,®® tumor metastasis,'® cardio-
vascular,”" and neurological diseases.'?'* In the brain of
mice, overexpression of furin promotes dendritic morpho-
genesis and cognitive function' but also contributes to
epileptic susceptibility.’® Given that furin knockout mice
are embryonic lethal,'® how furin regulates the develop-
ment of the brain is not completely understood.

In this study, we generated a conditional knockout (cKO)
mouse model by targeting the brain-specific furin. We
defined that furin deficiency causes early death and growth
retardation. The development of hydrocephalus was par-
alleled with the impaired ciliogenesis and ependymal cells
that form the lining of the lateral ventricles. We further
found that the vesicle protein RAB28 was associated with
impaired ciliogenesis, and the astrocyte-enriched cell
adhesion molecules could be involved in the abnormal dif-
ferentiation of astrocytes into ependymal cells.

Materials and methods

Generation of furin cKO mice and tissue
preparation

All animal protocols were approved by the Institutional An-
imal Ethics Committee of the First Affiliated Hospital of
Chongging Medical University, China, in accordance with the
NIH Guidelines for the Care and Use of Laboratory Animals.

Furin cKO mice were generated by crossing the floxed
furin (Furin™®) mice with Nestin-Cre transgenic mice (The
Jackson Laboratory), which expresses Cre recombinase in
the nervous system."” Furin™® mice were created on a
C57BL/6J background (CasGene Biotech Co., Ltd, Beijing,
China). Mouse zygotes obtained by mating males with
superovulated females were micro-injected with a mixture
of Cas9 mRNA (80 ng/uL), sgRNA (40 ng/uL), and donor
vector (8 ng/uL). The injected zygotes were transferred
into pseudopregnant CD1 female mice, and viable adult
Furin”f mice were obtained. The correctly targeted mice
were genotyped by PCR and sequencing.®

Mice were anesthetized by intraperitoneal injection of
2% sodium pentobarbital (50 mg/kg) and intracardially
perfused with 20 mL of 0.01 M PBS (pH = 7.4), followed by
150 mL of 4% paraformaldehyde. Then, brain samples were

isolated immediately and stored in 4% paraformaldehyde
for 24 h at 4 °C before use. For Western blotting, brain
tissues without intracardial perfusion were collected and
immediately stored in liquid nitrogen.

Quantitative reverse transcription PCR

Total RNA was extracted using the Trizol kit (Takara, Dalian,
China), and cDNA was synthesized using the cDNA Synthesis
Kit (Vazyme, Nanjing, China). Quantitative reverse tran-
scription PCR and cDNA sequencing were performed
following standard methods.’ Primer sequences were:
Furin-seq-F1 TGAGAACCACTGCTCTAGCCTTCC, Furin-seq-R1
AGAGACAACCAGCCCATTACCAGA; Nes-F GCCTTATTGTGGAA
GGACTG, Nes-R CCTTCCTGAAGCAGTAGAGCA, respectively.

Western blotting

ARIPA protein extraction kit (Beyotime Biotechnology China)
containing phenylmethylsulfonyl fluoride (PMSF; Beyotime
Biotechnology China) was used to extract total protein. An
enhanced bicinchoninic acid (BCA) protein assay kit (Beyo-
time Institute of Biotechnology) was used to determine
protein concentrations. Western blotting analysis was per-
formed according to published protocols.' The following
antibodies were used: furin (1:1000, Abcam, ab183495),
$100 calcium-binding protein B (51008) (1:1000, Abcam,
ab52642), SRY-Box transcription factor 9 (SOX9) (1:5000,
Abcam, ab185966), polypyrimidine tract binding protein 1
(PTBP1) (1:2000, Proteintech, 12582-1-AP), glial fibrillary
acidic protein (GFAP) (1:2000, Proteintech, 16825-1-AP),
adenylate cyclase 3 (ADCY3) (1:1000, Proteintech, 19492-1-
AP), Rab28 (1:1000, Thermo, PA5-68303), NeuN (1:1500,
Abcam, ab177487), GAPDH (1:5000, Proteintech, 10494-1-
AP), and horseradish peroxidase-conjugated anti-rabbit or
anti-mouse secondary antibodies (1:3000, Proteintech). The
bands were visualized using Western Bright ECL (Advansta,
US) and a Fusion FX5 image analysis system (Vilber Lourmat,
France).

Immunofluorescent labeling and
immunohistochemistry

For immunofluorescent labeling,?>?" brain tissues were
dehydrated in gradient sucrose solutions. After antigen re-
covery, tissues were cryo-sectioned (10-um thickness) by a
freezing microtome (Thermo, USA) and permeabilized for
10 min using 0.4% Triton X-100 and blocked using 10% donkey
serum (Solarbio, SL050) at 37 °C for 30 min to eliminate
nonspecific staining. Then, slices were incubated with the
primary antibody mixture at 4 °C overnight, and secondary
antibodies in the dark at 37 °C for 2 h. The following primary
antibodies were used: furin (1:100, Abcam, ab183495),
S100B (1:100, Abcam, ab52642), SOX9 (1:200, Abcam,
ab185966), GFAP (1:500, Proteintech, 16825-1-AP), RAB28
(1:100, Thermo, PA5-68303). Images were captured using a
laser scanning confocal microscope (Leica TCS SP8 X, Ger-
many). Immunofluorescence intensity and colocalization
were quantified using Image-Pro Plus 6.0 software (Media
Cybernetics, USA).
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For immunocytochemistry, paraffin-embedded tissue
sections (10-pm thickness) were dewaxed with xylene and
rehydrated in a series of gradient ethanol solutions. After
antigen retrieval, a peroxidase inhibitor (PV-9002, ZSGB-
BIO) was used to block endogenous peroxidase activity.”?
Tissue sections were then incubated with NeuN antibody
(1:100, Abcam, ab177487) at 4 °C overnight, followed by
incubation with a biotinylated secondary goat anti-rabbit
antibody (1:500, Zhongshan Golden Bridge, Inc.) at 37 °C
for 30 min and then an avidin-biotin-peroxidase complex
(Zhongshan Golden Bridge) at 37 °C for 30 min. The sections
were incubated with 3,3’-diaminobenzidine (Zhongshan
Golden Bridge) and hematoxylin. Finally, slices were
dehydrated in a series of ethanol solutions and cleared in
xylene before being mounted with neutral resin. Images
were captured using a LEICA DM6000B automated micro-
scope (Leica, Germany). The Motic Med 6.0 CMIAS pathol-
ogy image analysis system (Beijing Motic, Beijing, China)
was used to perform automatic semi-quantitative analysis
on 10 randomly selected images from each section.

Magnetic resonance imaging

Mice at 3 months were anesthetized by 2% isoflurane, and
imaged with a 7 T, 20-cm horizontal bore instrument by T1-
and T2-weighted modalities at the Small Animal Imaging
Facility (Bruker, Germany). Body core temperature was
kept at 37 °C by a rectal probe. After completion, the mice
were immediately rewarmed under a heat lamp. Ventricle
and total brain volumes were quantified by the ITK-SNAP
(v3.2) software. %3

Transmission electron microscopy (TEM) and scan
electron microscopy (SEM)

Brain tissues were dissected and fixed by a mixture of 2.5%
glutaraldehyde and 1% osmium tetroxide at 4 °C overnight
before sampling. For TEM, ultra-thin sections (50-nm
thickness) were obtained using a Leica EMUC7 ultramicro-
tome. After being stained with uranyl acetate and lead
citrate, sections were imaged using a Hitachi-7500 trans-
mission electron microscope.?* For SEM, dehydrated sec-
tions were coated with gold particles and scanned with a
Hitachi SU8010 scanning electron microscope.?>:2°

Proteomics

Brain tissues from mice at 3 months were lysed in SDT
buffer (4% SDS, 100 mM Tris/HCl pH 7.6, 0.1 M DTT) for
protein extraction and then quantified by the BCA method.
Samples were desalted by C18 Cartridge and then lyophi-
lized and solubilized by adding 40 pL of 0.1% formic acid
solution for peptide quantification (OD,g). Peptides were
labeled according to the instructions of Thermo’s TMT la-
beling kit, and then mixed in equal amounts and graded
using the High pH Reversed-Phase Peptide Fractionation
Kit. The column was first equilibrated with acetonitrile and
0.1% trifluoroacetic acid, and then the labeled peptides
were sampled, desalted by adding pure water, and

centrifuged at a low speed. The column-bound peptides
were eluted with increasing concentrations of acetonitrile
solutions. Each peptide sample was vacuum-dried and then
lyophilized with 12 uL of 0.1% formic acid. Each sample was
separated using an HPLC liquid phase system with a nano-
liter flow rate. Samples were separated by chromatography
and then analyzed using a mass spectrometer. Protein
identification and quantitative analysis were performed by
Database.

Statistical analysis

All statistical analyses were conducted using the statistical
software GraphPad Prism 8.0, and data results were bio-
logically repeated at least three times. To determine
whether the samples exhibited normal distributions and
equal variances (determined by the one-sample
Kolmogorov—Smirnov test and Levene’s test), the experi-
mental results were statistically assessed using parametric
or nonparametric tests. All data were expressed as
mean =+ standard error of the mean and were analyzed
using Student’s t-test or repeated measures ANOVA. Dif-
ferences were considered significant when P-values <0.05.

Results

Furin deficiency caused growth retardation and
early perinatal lethality

Furin protein is highly expressed in the brain, particularly in
the cortex and hippocampus.’® To determine the primary
roles of furin in nervous system development, we generated
furin conditional knockout mice (FURIN™/7), by crossing the
floxed furin allele (FURIN™) with Nestin-Cre (Fig. 1A). In
Nestin-Cre mice, Cre recombinase is controlled by a nestin
promoter that is expressed in neuronal and glial cell pre-
cursors.”” These FURIN™/~ mice were featured by enlarged
dome-shaped skulls, but the brain showed no overt gross
abnormalities (Fig. 1B). In addition, the postnatal growth of
FURIN™/~ was retarded as demonstrated by body size that
was significantly smaller in FURIN™/~ than in FURIN*/~ and
FURIN*/* mice of the same age (Fig. 1C). As shown in Figure
1D and E, the protein level of furin was significantly
decreased in the brain of FURIN™/~ mice relative to FURIN*/*
mice. Genotyping analysis revealed that the LOXP site was
successfully inserted flanking exons 5—6, with the correct
expression of Cre in the three different mice (Fig. 1F).
Accordingly, furin mRNA levels were dramatically decreased
in FURIN™/~ mice compared with FURIN™'* mice (Fig. 1G).
Most of the FURIN~/~ mice were viable at birth. However,
FURIN™'~ mice failed to thrive with lethargy and muscle
weakness, and died early at different times within the first 3
weeks (Fig. 1H). As shown in Figure 11, FURIN */~ mice
behaved similarly to FURIN*/* mice and lived up to 24
months, but exhibited lower body weight, especially at 180
days; whereas only half of FURIN™/~ mice survived at 180
days, with a loss of body weight at all stages. These results
indicated that furin was essential for postnatal develop-
ment, growth, and survival.
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Figure 1  Generation of furin conditional knockout mice. (A) Schematic representation of the FURIN gene targeting strategy. The
blue triangles of Loxp sites are responsible for eliminating exons 5—6 by Cre recombinase in neurons. (B) Representative images of
FURIN*/* and FURIN™/~ mice at 5 months. Arrows indicate the enlarged and dome-shaped skull. (C) Gross appearance of FURIN™/~,
FURIN*™/~, and FURIN*/* mice. The body of the FURIN~/~ mice was smaller than that of the FURIN*/* and FURIN*/~ mice at 3 months.
(D, E) Western blot (D) and quantification (E) of furin protein in the cortex of FURIN*/* and FURIN~/~ mice. (F) PCR gel bands show the
presence of furin (350 bp) and the insertion of LOXP (395 bp) on the left, and Nestin-Cre (150 bp) on the right. (G) mRNA level of furin
determined by RT-PCRin the FURIN*/*and FURIN~/~ mice. (H) The survival rate in postnatal FURIN*/*, FURIN~/~, and FURIN*/~ mice.
n = 50in each group. (I) Body weight comparison of the three different mice at the indicated days. n = 50 in each group (exceptn = 24
in the FURIN™/~ mice at 180 days). P-values were calculated using two-tailed Student’s t-test, ***P < 0.005, ****P < 0.001.

Loss of furin in the nervous system resulted in imaging. The coronary magnetic resonance images showed
hydrocephalus that compared with FURIN*/* mice, FURIN*/~ mice had

some degree of the lateral ventricle (LV) and third ventricle
To determine whether furin deficiency might cause  (TV) enlargement, whereas the aqueduct (Aq) and fourth
anatomical changes in the brain, we assessed brain ventricle (FV) were slightly enlarged, and had no significant
morphology using magnetic resonance T2-weighted morphological changes in Aq, FV, and the corpus callosum
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(Fig. 2A). In FURIN™/~ mice, the LV and TV are significantly
enlarged, and the CSF-filled LVs coalesced into a vast single
void (Fig. 2A); whereas the Aq was significantly narrowed,
and the volume and shape of FV were relatively preserved
(Fig. 2A). It is reported that the TV-Ag-FV axis is the

narrowest portion of the entire ventricular system, in which
the obstruction is the most frequent cause of hydrocepha-
lus.>?® Median-sagittal magnetic resonance images showed
that the Ags were almost invisible in FURIN™/~ mice
(Fig. 2B). Accordingly, a stenotic Aq was clearly found by HE
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Figure 2 FURIN/~ mice develop postnatal hydrocephalus. (A) T2-weighted coronal magnetic resonance images of the brains of
FURIN*™/*, FURIN*™/~, and FURIN~/~ mice at 5 months. From left to right are in the order of forebrain to hindbrain. In the FURIN~/~
mice, LV and TV were significantly enlarged, Aq was narrowed, and there was no significant difference in FV. LV, lateral ventricle;
TV, third ventricle; Aq, aqueduct; FV, fourth ventricle. (B) T2-weighted sagittal magnetic resonance images of the brains at 5
months. In the FURIN=/~ mice, LV and TV were significantly enlarged, and Aq was faintly visible. (C, D) The representative coronal
HE sections of aqueduct in the FURIN*/* and FURIN™/~ mice at 5 months. Scale bars: top, 500 um; bottom, 50 pm. (E) Quantitative
analysis of ventricles and catheters from (A). The data were expressed as mean + standard error of the mean; p-values were
calculated using two-tailed Student’s t-test; NS, not significant; *P < 0.05, **P < 0.01, ***P < 0.005.
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Figure 3  Cilial morphogenesis is disrupted with the decreased expression of RAB28 in FURIN™'~ mice. (A) Representative SEM
images show the aqueduct in the FURIN™/* mice at 5 months. Scale bars: 500 um and 50 pm, respectively. (B) Representative SEM
images show the aqueduct in the FURIN™/~ mice at 5 months. Scale bars: 500 pm and 20 um, respectively. (C, D) SEM images (C) and
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uniformed direction of cilia tufts were presented in the FURIN™/* mice, whereas the sparsely distributed cilium bundles with
shorter and fewer cilia in disrupted orientation were found in the FURIN™/~ mice at 5 months. Scale bars: left, 50 um; middle,
20 um; right, 5 um. (E—J) TEM images (E—I) and quantification (J) of microtubule organization with or without normal “9 + 2”
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staining in FURIN™/~ mice (Fig. 2C). As shown in Figure 2D,
the average areas of LVs and TVs were dramatically
increased in FURIN®/~ and FURIN™/~ mice than those in
FURIN*/* mice, with the needle-like Aq and a relatively
preserved FV. These results indicated that partial or com-
plete loss of furin caused hydrocephalus during brain
development.

Furin deficiency impaired ciliogenesis and down-
regulated RAB28 expression

The Aq stenosis suggested pathological changes in the
interface between CSF and the parenchyma. Indeed, the SEM
image showed a normal shape and smooth lining of Aq in
FURIN*/* mice, whereas a narrowed and slightly distorted Aq
was found in FURIN™/~ mice with some granulations on the
wall (Fig. 3A, B). It is reported that dysfunctional cilia could
disrupt CSF circulation with the collapsed Aq.?”*° Thus, we
assessed the morphology of cilia on the lateral ventricular
wall using SEM. As shown in Figure 3C and D, compared with
FURIN*/* mice that comprised a confluent ependymal cilial
layer, FURIN™/~ mice exhibited comparatively sparse cilium
coverage. In FURIN*'* mice, the cilia were clustered and
relatively aligned, with multi-clusters consistently orien-
tated, whereas in FURIN™/~ mice, the cilia clusters were
disorganized in different directions, and distributed sparsely
(Fig. 3C, D). Further TEM analysis revealed that the residual
cilia retained a normal and classic (9 + 2) microtubule
structure arrangement in FURIN*/* mice®'; in comparison,
the organization of microtubules was lost, and the numbers
changed in different cilia sections of FURIN™'~ mice
(Fig. 3E—J). These results indicated that the structure and
function of cilia were significantly impaired in furin-deficient
mice.

Ciliogenesis is a multi-step process, in which membrane
trafficking plays an essential role.*? It is reported that the
GTPase RAB28 is located in the endosomal pathway and
contributes to ciliogenesis.>* Given that furin regulates its
target protein function in the Golgi and secretary vesicle
compartments,” we speculated that the impaired cilio-
genesis in furin cKO mice could be associated with RAB28
dysfunction. As shown in Figure 3K and L, the expression
level of RAB28 was significantly decreased in the ependy-
mal line of ventricles in furin cKO mice relative to the
control. Accordingly, the protein level of RAB28 was also
significantly decreased in the cortex of furin cKO mice
(Fig. 3M, N). Thus, the reduced RAB28 could be suggestive
of aberrant membrane trafficking by furin deficiency.

FURIN~/~ mice exhibited neuronal loss and
ependymal cell damage

To determine whether furin deficiency causes neuronal
loss, we assessed the expression of NeuN,** a neuronal

marker in the brain of furin ckO mice. As shown in Figure 4A
and B, the NeuN-positive cells were significantly reduced in
the brain of furin cKO mice relative to the control.
Accordingly, the immunofluorescent staining of furin that
formed a dotted line in ependyma was also significantly
decreased in FURIN™/~ mice (Fig. 4C, D).

Ependymal cells that are located in the wall of the LVs
play an important role in hydrocephalus.? Moreover,
ependymal cell differentiation is closely associated with
ciliogenesis.>*> We speculate that the dysfunctional cilio-
genesis might be accompanied by the impaired structural
integrity of ependyma. Thus, we assessed the expression of
ependymal cell marker $100B>¢ in furin cKO mice. As shown
in Figure 4E and F, the intensity of S100B was significantly
reduced in FURIN~/~ mice relative to FURIN*'* mice; and
the S100B-labelled cells showed less connectivity, sug-
gesting an impaired structural integrity of ependyma. As
ADCY3 and PTBP1 are also indicative of cilia and ependymal
cells,?” respectively, we further found that the protein
levels of ADCY3 and PTBP1 were significantly reduced in the
brain of furin deficient mice (Fig. 4G, H). Accordingly, the
protein levels of furin and S1008 were significantly reduced
in furin-deficient mice relative to the control (Fig. 4G, H).
These results indicated that the damaged ependymal cells
were accompanied by neuronal loss in the brain of furin cKO
mice.

Proteomics signatures in the cortex of FURIN™/~
mice

To further understand the potential molecular alterations
induced by furin deficiency, we performed proteomics
analysis using the cortical samples from FURIN™/~ and
FURIN*/* mice. A total of 5,895 proteins and 36,158 pep-
tides were identified (Table S1). We found 49 differentially
expressed proteins (DEPs) between FURIN*/* and FURIN™/~
(P value < 0.05 and fold change > 1.2 or < 0.83), which
included 31 up-regulated and 18 down-regulated proteins
(Fig. 5A). Gene ontology analysis revealed that “cell
adhesion” was commonly enriched in the molecular func-
tion, cellular component, and biological process (Fig. 5B).
As shown in Figure 5C, the heatmap depicted a detailed DEP
list, in which L1cam and Dlg5 have been reported to cause
hydrocephalus.3®*° Kyoto Encyclopedia of Genes and Ge-
nomes analysis showed that these DEPs were enriched in 20
pathways; and again, “cell adhesion molecules” remained
one of the most enriched (Fig. 5D). These DEPs were then
mapped to Search Tool for the Retrieval of Interacting
Genes/Proteins database for potential protein—protein in-
teractions, which showed that integrin subunit beta 8
(ITGB8), fibrinogen alpha chain (FGA), and breast cancer
anti-estrogen resistance 1 (BCAR1) were closely interacted
(Fig. 5E). Western blotting analysis revealed that the
increased expression of ITGB8 and the decreased levels of
FGA and BCAR1 were found in FURIN™/~ mice relative to

ultrastructure in the FURIN*/* and FURIN™/~ mice at 5 months. (K, L) Immunofluorescent staining (K) and quantification (L) of
RAB28 in ependymal cells of FURIN*/* and FURIN™/~ mice at 5 months. Green, RAB28; blue, DAPI (nuclear marker). Scale bars:
20 um. (M, N) Western blot images (M) and quantification (N) of RAB28 in the cortex of the FURIN™'* and FURIN™/~ mice at 5
months. The data were expressed as mean =+ standard error of the mean; p-values were calculated using two-tailed Student’s t-

test; *P < 0.05, ***P < 0.005.
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FURIN*/* mice (Fig. 5F, G), demonstrating a good reliability
and validity of proteomics. These results indicated that cell
adhesion molecules were among the prominent proteomics
signatures of furin deficiency.

Furin deletion facilitated astrocyte reactivity but
not differentiation

Among the signature proteins that were changed in furin
cKO mice, ITGB8 and BCART1 are highly enriched astrocytes
relative to neurons.*>*' Given that adhesion molecules are
known to regulate astrocyte morphology,* we speculated
that astrocytic functions could be accordingly affected in
furin cKO mice. As shown in Figure 6A, B, a widespread
enhancement of GFAP, a marker of astrocyte,* was
detected in the coronary sections of FURIN™/~ mice
(Fig. 6A, B). Especially, a dramatic augmentation of GFAP
staining was distributed in the surrounding area of Aq,
which was significantly narrowed in FURIN~/~ mice relative
to FURIN*/* mice (Fig. 6C, D). It is reported that astrocytes
compensate for the loss of ependymal cells in hydroceph-
alus,* and SOX9, the specific marker of astrocyte,* is also
indicative of glial precursor cells responsible for the gen-
eration of ependyma.*®*” We next assessed the expression
of SOX9 in the ependyma of furin cKO mice. As shown in
Figure 6E and F, the immuno-signals of SOX9 were signifi-
cantly reduced in FURIN™/~ mice relative to FURIN™/*
mice. The altered protein expression of GFAP and SOX9 was
further confirmed by Western blotting analysis (Fig. 6G, H).
These results indicated that astrocyte overgrowth went
with a compromised differentiation into ependymal cells.

Discussion

CSF is mainly secreted by the choroid plexus epithelium,
flows from the cerebral ventricles to subarachnoid spaces,
and reaches the venous system through the glymphatic
(glial-lymphatic) pathway.*® In this pathway, CSF moves
into the parenchyma along perivascular spaces, merges
with interstitial fluid (ISF), and drains into the lymphatic
system.*>°° Between the ventricles and parenchyma,
ependymal cells form a line and barrier.”" It is reported that
about 20% of CSF arises from ISF,>? suggesting the role of
ependymal cells in ISF-CSF interchange.®® In the current
study, we provide evidence that FURIN™/~ mice develop
progressive hydrocephalus, which is apparently accompa-
nied by disorganized cilia and associated down-regulation
of RAB28. Moreover, the altered protein levels, particularly
adhesion molecules, are suggestive of astroglial reactivity
with the compromised differentiation into ependymal cells.

Multiple motile cilia are found on the surface of ependy-
mal cells, which promote the directed CSF circulation.>%>*
Hydrocephalus is caused by a mutation in Ccdc39 that con-
trols cilial development, or lack of the adherins Celsr2 and
Celsr3 that regulate ependymal ciliogenesis.”>>® During cil-
iogenesis, the basal body is matured from a mother centriole
and moves towards the plasma membrane; and this process
involves the GTPase RAB28 that is localized to an interme-
diary ciliary vesicle.” It is reported that mutation in RAB28
prevents its localization to primary cilium,’® and impor-
tantly, causes missing and disconnected axoneme in

neuronal cells.? Moreover, the endocytic recycling pathway
has been identified as one of the modulators of cilio-
genesis,®® which is in line with the function of furin that is
trafficked between Golgi apparatus and cell surface,” and
the important role of RAB28 in intracellular trafficking of
endocytosed proteins.>? In the present study, the Aq stenosis
is accompanied by disorganized (9 + 2) microtubule struc-
tures and cilia orientation, and the decreased expression of
ependymal RAB28 in Furin™’~ mice, implying that an intra-
cellular vesicle-turnover mechanism could contribute to the
impaired ciliogenesis by furin.

Ependymal cells are essential for neuronal develop-
ment.®" It is reported that hydrocephalus can be caused by
mutations in MPDZ gene that leads to ependymal malfor-
mation,®? and by deletion of SNX27 or YAP that impairs
ependymal cell differentiation.>”>* Importantly, in mutant
hydrocephalus with hop gait (hyh) mice,® ependymal
denudation develops before the onset of hydrocephalus.®’
Although direct evidence is lacking, disruption of the
ependymal barrier might favor ISF efflux into CSF in the
ventricles, which are in close proximity to white matter.®®
As epithelial cells in the choroid plexus have a similar
function to ependymal cells, structural defects of the
choroid plexus could also increase CSF production.®”-®® In
the current study, the decreased expression of ependymal
markers S100B, ADCY3, and PTBP1 is paralleled by
morphologically disintegrated ependymal cells, suggesting
that the altered CSF dynamics induced by furin deficiency is
closely associated with the impaired structure and function
of ependymal cells. In line with ependymal denudation, a
widespread loss of neuronal cells is presented in the brain
of furin cKO mice. This could occur in a cell-autonomous
manner, as furin overexpression promotes dendritic
morphogenesis and learning and memory.'* Importantly,
neuronal loss may also lead to gliosis, as astrocytes respond
to all forms of insults in the brain.®’ For instance, ischemic
neuronal death is followed by rapid and severe astrocy-
tosis’% and conversely, a reduction of neuronal loss is
accompanied by decreased gliosis in the brain of Alz-
heimer’s disease after mitochondrial transfer.”’

The role of astrocytes in hydrocephalus is not conclu-
sive.”? It is reported that in an animal model of hyh mice,
astrocytes form a layer at the denuded ventricular lining,**
supporting that astroglial reaction may compensate for the
loss of CSF homeostasis.”> However, in a mouse model of
Bardet—Biedl syndrome (BBS) caused by BBS8 deletion, the
enhanced GFAP protein correlates with the development of
hydrocephalus,”* suggesting that astrocytes play a role in
causing this phenotype. In our study, proteomics study re-
veals that cell adhesion molecules including astrocyte-
enriched ITGB8 and BCAR1 are differentially regulated in
furin cKO mice. As a member of the integrin family that
plays an important role in brain assembly,”” ITGB8 also
regulates angiogenesis and embryo implantation.”®”” In the
radial glia, ITGB8 contributes to the expansion of the
human brain during development’?; and the function of the
decreased FGA is supported by that FGA-KO facilitates the
growth and metastasis of lung cancer through integrin-AKT
signaling.”® It could be likely that these changes are asso-
ciated with enhanced GFAP staining and astrocytic over-
growth (Fig. 5C—E). On the other hand, BCAR1 (p130Cas), a
member of the Crk-associated substrate family of scaffold
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proteins, controls neuronal outgrowth and axonal guid-
ance.?’ By analogue, deletion of BCAR1 impairs the for-
mation of dental enamel in mice and the caudal vein plexus
in zebrafish,®"'%2 the decreased expression of BCAR1
(Fig. 5F, G) could be associated with the impaired differ-
entiation of astrocytic progenitor cells into ependymal
cells. In support, the expression of SOX9 which is indicative
of glial progenitor differentiation into mature epen-
dyma“®* is significantly reduced in furin cKO mice. Given
that astrocytes overgrow but fail to normally differentiate
into ependymal cells, the present study supports that the
dysfunctional astrocytes could play a role in the develop-
ment of hydrocephalus.

In conclusion, through investigation of cerebral furin
cKO mice, we have confirmed the previous findings that an
impaired ciliogenesis of ependymal cells is a common
feature of hydrocephalus. Whereas the proteomics results
provide a clue for further understanding furin functions,
the decreased expression of RAB28 associated with cilio-
genesis and the disturbed differentiation of astrocytes into
ependyma are highlighted in the present study.
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